If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+27v+49=0
a = 3; b = 27; c = +49;
Δ = b2-4ac
Δ = 272-4·3·49
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{141}}{2*3}=\frac{-27-\sqrt{141}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{141}}{2*3}=\frac{-27+\sqrt{141}}{6} $
| 12/5x+x=374 | | 413x+59–292x=122x-249 | | 7X+8-2=5x4 | | 0.01/y+y=0.1 | | 7x+8-2=5.4 | | 18+x+25=180 | | 12/11=y/165 | | 12(x-2)=3(4x-4)-12 | | 2x+2x-12=12 | | 48=103y-49102y+7+42 | | (14-3x)(12-2x)=120 | | 5(3x-1/7)+2=35 | | -3/5=v/8+9.3 | | -5(x-1)-4x=4-9(x+3) | | 3^5x-1=8^2x+7 | | -6/2+z=12 | | 174=70-v | | F(-2)=x^2-3x+4 | | 5/c=20 | | 12−4x=−36 | | u2–17u–18=0 | | 4x2+2X-2=0 | | (2h–3)(4h+1)=0 | | 10=-16t^2+48t+8 | | -2(x-1)+3x=3-(x-7)+x | | 100x/15=96 | | 3-(2-3x)=4(x-2)+5 | | 1x-3/5=1/2 | | 5^x=8^x-7 | | (77+35/8)+1=x | | 180=7x+1+9x-7 | | 2x-11=-43-7x |